Thursday, September 9, 2010

A "phi-bonacci" sequence and its consecutive quotients

A most interesting sequence:
"phi-bonacci" ?...

X(0)=0, X(1)=1
X(n)=phi (X(n-1)+X(n-2)+1
if n is at least 2, where phi is the Euler's totient function.

This ensures that X(n) is never greater than the 'regular' Fibonacci number F(n)

Plotted - the sequence of quotients X(n+1)/X(n) for n = 1,2,...,324

The raw list of the first 325 non-zero terms follows:

1, 1, 2, 2, 4, 6, 10, 16, 18, 24, 42, 66, 108, 120, 228, 348, 576, 720, 1296, 2016, 3312, 5256, 7200, 12456, 17860, 25200, 40256, 37368, 39600, 72900, 112500, 185400, 282204, 364800, 517600, 805392, 1133988, 1939380, 2788176, 4727556, 6819120, 11539840, 18324852, 28220080, 46471680, 70297856, 77663160, 98640672, 173595168, 256221952, 408844800, 613907760, 1020322800, 1598868000, 2614401972, 3650502240, 6204873360, 9219832128, 14163287040, 23375208496, 37533203556, 59869153008, 77921885248, 136242824256, 171331767600, 280988047872, 412648088320, 492483317760, 759235553856, 1248565926960, 1825274073460,